
  

Thinking Recursively
Part IV



  

Outline for Today

● Recap From Last Time
● Where are we, again?

● Enumerating Combinations
● Forming a majority opinion.

● Shrinkable Words
● A little word puzzle!



  

Recap from Last Time



List all subsets of
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Each decision is of 
the form “do I 

include this item?”



List all permutations of
{A, H, I}

Each decision is of 
the form “which item 

do I pick next?”
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New Stuff!



Enumerating Combinations



You need at least five US Supreme 
Court justices to agree to set a 

precedent.

What are all the ways you can pick five 
justices from the US Supreme Court?



Generating Combinations

● Suppose that we want to find every way to choose exactly one 
element from a set.

● We could do something like this:

for (int x: mySet) {

    cout << x << endl;

}



Generating Combinations

● Suppose that we want to find every way to choose exactly two 
elements from a set.

● We could do something like this:

for (int x: mySet) {

  for (int y: mySet) {

    if (x < y) {

       cout << x << ", " << y << endl;

    }

  }

}



Generating Combinations

● Suppose that we want to find every way to choose exactly three 
elements from a set.

● We could do something like this:

for (int x: mySet) {

  for (int y: mySet) {

    for (int z: mySet) {

      if (x < y && y < z) {

         cout << x << ", " << y << ", " << z << endl;

      }

    }

  }

}



Generating Combinations

● If we know how many elements we want 
in advance, we can always just nest a 
whole bunch of loops.

● But what if we don't know in advance?
● Or we do know in advance, but it’s a 

reasonably large number and we don’t 
want to write a huge number of nested 
loops and complicated if statements?



                 combinationsOf(const Set<string>& elems,
                                int numToPick);



                 combinationsOf(const Set<string>& elems,
                                int numToPick);

Given this set of 
elements to pick 

from…



                 combinationsOf(const Set<string>& elems,
                                int numToPick);

Given this set of 
elements to pick 

from…

… return all the 
ways to pick this 
many of them.



             ??? combinationsOf(const Set<string>& elems,
                                int numToPick);

Given this set of 
elements to pick 

from…

… return all the 
ways to pick this 
many of them.



             ??? combinationsOf(const Set<string>& elems,
                                int numToPick);

Given this set of 
elements to pick 

from…

… return all the 
ways to pick this 
many of them.

Answer at
https://pollev.com/cs106bwin23 

What should this function’s 
return type be?

https://pollev.com/cs106bwin23


             ??? combinationsOf(const Set<string>& elems,
                                int numToPick);

Given this set of 
elements to pick 

from…

… return all the 
ways to pick this 
many of them.

Any one combination of strings 
will be a Set<string>.

If we want a group of multiple 
combinations, we can use a 

Set<Set<string>>.



Implementing Combinations



Our Base Case

Pick 0 more Justices out of
{Kagan, Jackson}

Chosen so far:
{Alito, Roberts, Gorsuch,

 Thomas, Sotomayor}

There’s no need to 
keep looking.

 

What should we 
return in this 

case?



Our Base Case, Part II

Pick 5 more Justices out of
{Sotomayor, Thomas}

Chosen so far: { }

There is no way to 
do this!

 

What should we 
return in this 

case?



Generating Combinations



Generating Combinations



Generating Combinations



Generating Combinations

Option 1: 
Exclude this 

person.



Generating Combinations

Option 1: 
Exclude this 

person.



Generating Combinations

Option 1: 
Exclude this 

person.



Generating Combinations

Option 1: 
Exclude this 

person.



Generating Combinations

Option 1: 
Exclude this 

person.



Generating Combinations

One way to choose 
5 elements out of 9 is 
to exclude the first 
element, then to 

choose 5 elements out 
of the remaining 8.

Option 1: 
Exclude this 

person.



Generating Combinations



Generating Combinations

Option 2: 
Include this 

person.



Generating Combinations

Option 2: 
Include this 

person.



Generating Combinations

Option 2: 
Include this 

person.



Generating Combinations

Option 2: 
Include this 

person.



Generating Combinations

Option 2: 
Include this 

person.



Generating Combinations

One way to choose
5 elements out of 9 
is to include the 

first element, then 
choose 4 elements 

out of the 
remaining 8.

Option 2: 
Include this 

person.



Generating Combinations

● Base Case 1: If we need to pick zero more 
people, the only combination we can 
make is the one we’ve built up so far.

● Base Case 2: If we need to pick more 
items than what remains, we cannot 
make any combinations.

● Recursive Case: Pick an item. Then either 
include it (and we need one fewer item) 
or exclude it (and we still need the same 
number of items.)



A Comment on Types



The Wonderful auto Keyword

● There are many cases in which there is 
exactly one possible type that a variable could 
have.

● In that case, rather than explicitly writing out 
the type, you can use the auto keyword:

auto var = expression;
● While in principle you can use this in many 

places, we recommend just using it to save 
typing when working with container types.



A Little Word Puzzle



“What nine-letter word can be reduced to a 
single-letter word one letter at a time by 

removing letters, leaving it a legal word at 
each step?”



The Startling Truth?

S T A R T L I N G



The Startling Truth?

S T A R T I N G



The Startling Truth?

S T A R I N G



The Startling Truth?

S T R I N G



The Startling Truth?

S T I N G



The Startling Truth?

S I N G



The Startling Truth?

S I N



The Startling Truth?

I N



The Startling Truth?

I



Is there really just one nine-letter
word with this property?



All Possible Paths
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“Cart” is 
shrinkable...

… because “art” 
is shrinkable …

… because “at” is 
shrinkable …

… because “a” is a 
single-letter word.



All Possible Paths
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All Possible Paths
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“Up” is not 
shrinkable…

… because neither P 
nor U are words.



All Possible Paths
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“Cup” is not 
shrinkable…

… because none 
of these are 

shrinkable words.



All Possible Paths
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“Cusp” is not 
shrinkable…

… because none 
of these are 

shrinkable words.



Shrinkable Words

● A shrinkable word is a word that can be reduced 
down to one letter by removing one character at a 
time, leaving a word at each step.

● Base Cases:

● A string that is not a word is not a shrinkable word.
● Any single-letter word is shrinkable (A, I, and O).

● Recursive Step:

● A multi-letter word is shrinkable if you can remove 
a letter to form a shrinkable word.

● A multi-letter word is not shrinkable if no matter 
what letter you remove, it’s not shrinkable.



Your Action Items

● Read Chapter 9 of the textbook.
● There’s tons of cool backtracking examples 

there, and it will help you prep for Friday.
● Keep working on Assignment 3.

● If you’re following our recommended 
timetable, you’ll have finished Towers of 
Hanoi and Human Pyramids by the end of 
today and will have started Protein Synthesis.

● Ask for help if you need it! That’s what we’re 
all here for.



Next Time

● Output Parameters
● Recovering the solution to a backtracking 

problem.
● More Backtracking

● Techniques in searching for feasibility.
● Closing Thoughts on Recursion

● It’ll come back, but we’re going to focus on 
other things for a while!
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