

Thinking Recursively
Part IV

Outline for Today

● Recap From Last Time
● Where are we, again?

● Enumerating Combinations
● Forming a majority opinion.

● Shrinkable Words
● A little word puzzle!

Recap from Last Time

List all subsets of
{1, 2, 3}

{ }

{1, 2, 3}

{ }

{1, 2}

{ }

{1, 3}

{ }

{1}

{ }

{2, 3}

{ }

{2}

{ }

{3}

{ }

{ }

{ 3 }

{1, 2}

{ 3 }

{1}

{ 3 }

{2}

{ 3 }

{ }

{ 2, 3 }

{1}

{ 2, 3 }

{ }

{1, 2, 3}

{ }

 ✓ 1

 ✓ 2

 ✓ 3

 × 1

 × 2 × 2 ✓ 2

 × 3 ✓ 3 × 3 ✓ 3 × 3 ✓ 3 × 3

Each decision is of
the form “do I

include this item?”

List all permutations of
{A, H, I}

Each decision is of
the form “which item

do I pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I I

I

H H

H

A A

A I I A H

A

 H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""

New Stuff!

Enumerating Combinations

You need at least five US Supreme
Court justices to agree to set a

precedent.

What are all the ways you can pick five
justices from the US Supreme Court?

Generating Combinations

● Suppose that we want to find every way to choose exactly one
element from a set.

● We could do something like this:

for (int x: mySet) {

 cout << x << endl;

}

Generating Combinations

● Suppose that we want to find every way to choose exactly two
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 if (x < y) {

 cout << x << ", " << y << endl;

 }

 }

}

Generating Combinations

● Suppose that we want to find every way to choose exactly three
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 for (int z: mySet) {

 if (x < y && y < z) {

 cout << x << ", " << y << ", " << z << endl;

 }

 }

 }

}

Generating Combinations

● If we know how many elements we want
in advance, we can always just nest a
whole bunch of loops.

● But what if we don't know in advance?
● Or we do know in advance, but it’s a

reasonably large number and we don’t
want to write a huge number of nested
loops and complicated if statements?

 combinationsOf(const Set<string>& elems,
 int numToPick);

 combinationsOf(const Set<string>& elems,
 int numToPick);

Given this set of
elements to pick

from…

 combinationsOf(const Set<string>& elems,
 int numToPick);

Given this set of
elements to pick

from…

… return all the
ways to pick this
many of them.

 ??? combinationsOf(const Set<string>& elems,
 int numToPick);

Given this set of
elements to pick

from…

… return all the
ways to pick this
many of them.

 ??? combinationsOf(const Set<string>& elems,
 int numToPick);

Given this set of
elements to pick

from…

… return all the
ways to pick this
many of them.

Answer at
https://pollev.com/cs106bwin23

What should this function’s
return type be?

https://pollev.com/cs106bwin23

 ??? combinationsOf(const Set<string>& elems,
 int numToPick);

Given this set of
elements to pick

from…

… return all the
ways to pick this
many of them.

Any one combination of strings
will be a Set<string>.

If we want a group of multiple
combinations, we can use a

Set<Set<string>>.

Implementing Combinations

Our Base Case

Pick 0 more Justices out of
{Kagan, Jackson}

Chosen so far:
{Alito, Roberts, Gorsuch,

 Thomas, Sotomayor}

There’s no need to
keep looking.

What should we
return in this

case?

Our Base Case, Part II

Pick 5 more Justices out of
{Sotomayor, Thomas}

Chosen so far: { }

There is no way to
do this!

What should we
return in this

case?

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Generating Combinations

One way to choose
5 elements out of 9 is
to exclude the first
element, then to

choose 5 elements out
of the remaining 8.

Option 1:
Exclude this

person.

Generating Combinations

Generating Combinations

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Generating Combinations

One way to choose
5 elements out of 9
is to include the

first element, then
choose 4 elements

out of the
remaining 8.

Option 2:
Include this

person.

Generating Combinations

● Base Case 1: If we need to pick zero more
people, the only combination we can
make is the one we’ve built up so far.

● Base Case 2: If we need to pick more
items than what remains, we cannot
make any combinations.

● Recursive Case: Pick an item. Then either
include it (and we need one fewer item)
or exclude it (and we still need the same
number of items.)

A Comment on Types

The Wonderful auto Keyword

● There are many cases in which there is
exactly one possible type that a variable could
have.

● In that case, rather than explicitly writing out
the type, you can use the auto keyword:

auto var = expression;
● While in principle you can use this in many

places, we recommend just using it to save
typing when working with container types.

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

The Startling Truth?

S T A R T L I N G

The Startling Truth?

S T A R T I N G

The Startling Truth?

S T A R I N G

The Startling Truth?

S T R I N G

The Startling Truth?

S T I N G

The Startling Truth?

S I N G

The Startling Truth?

S I N

The Startling Truth?

I N

The Startling Truth?

I

Is there really just one nine-letter
word with this property?

All Possible Paths

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

“Cart” is
shrinkable...

… because “art”
is shrinkable …

… because “at” is
shrinkable …

… because “a” is a
single-letter word.

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

UP

P U

CP

P C

CU

U C

CUP

US

S U

CS

C S

CU

U C

CUS

SP

P S P U S U

USP

SP

P S

CP

P C

CS

S C

CSP

P U

CP

P C

CU

U C S U

CS

C S

CU

U C

CUS

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

CP

P C

CU

U C

CUP

US

S U

CS

C S

CU

U C

CUS

UP

P U

“Up” is not
shrinkable…

… because neither P
nor U are words.

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

P C U C

US

S U

CS

C S

CU

U C

CUS

P U

CP CU

CUP

UP

“Cup” is not
shrinkable…

… because none
of these are

shrinkable words.

All Possible Paths

SP

P S

UP

P U

US

S U

SP

P S

CP

P C

CS

S C P C U C

US

S U

CS

C S

CU

U CP U

CP CUUP

CUSP

USP CSP CUSCUP

“Cusp” is not
shrinkable…

… because none
of these are

shrinkable words.

Shrinkable Words

● A shrinkable word is a word that can be reduced
down to one letter by removing one character at a
time, leaving a word at each step.

● Base Cases:

● A string that is not a word is not a shrinkable word.
● Any single-letter word is shrinkable (A, I, and O).

● Recursive Step:

● A multi-letter word is shrinkable if you can remove
a letter to form a shrinkable word.

● A multi-letter word is not shrinkable if no matter
what letter you remove, it’s not shrinkable.

Your Action Items

● Read Chapter 9 of the textbook.
● There’s tons of cool backtracking examples

there, and it will help you prep for Friday.
● Keep working on Assignment 3.

● If you’re following our recommended
timetable, you’ll have finished Towers of
Hanoi and Human Pyramids by the end of
today and will have started Protein Synthesis.

● Ask for help if you need it! That’s what we’re
all here for.

Next Time

● Output Parameters
● Recovering the solution to a backtracking

problem.
● More Backtracking

● Techniques in searching for feasibility.
● Closing Thoughts on Recursion

● It’ll come back, but we’re going to focus on
other things for a while!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

